3 research outputs found

    End-to-end Learning for Image-based Detection of Molecular Alterations in Digital Pathology

    Full text link
    Current approaches for classification of whole slide images (WSI) in digital pathology predominantly utilize a two-stage learning pipeline. The first stage identifies areas of interest (e.g. tumor tissue), while the second stage processes cropped tiles from these areas in a supervised fashion. During inference, a large number of tiles are combined into a unified prediction for the entire slide. A major drawback of such approaches is the requirement for task-specific auxiliary labels which are not acquired in clinical routine. We propose a novel learning pipeline for WSI classification that is trainable end-to-end and does not require any auxiliary annotations. We apply our approach to predict molecular alterations for a number of different use-cases, including detection of microsatellite instability in colorectal tumors and prediction of specific mutations for colon, lung, and breast cancer cases from The Cancer Genome Atlas. Results reach AUC scores of up to 94% and are shown to be competitive with state of the art two-stage pipelines. We believe our approach can facilitate future research in digital pathology and contribute to solve a large range of problems around the prediction of cancer phenotypes, hopefully enabling personalized therapies for more patients in future.Comment: MICCAI 2022; 8.5 Pages, 4 Figure

    An Improved Extrapolation Scheme for Truncated CT Data Using 2D Fourier-Based Helgason-Ludwig Consistency Conditions

    Get PDF
    We improve data extrapolation for truncated computed tomography (CT) projections by using Helgason-Ludwig (HL) consistency conditions that mathematically describe the overlap of information between projections. First, we theoretically derive a 2D Fourier representation of the HL consistency conditions from their original formulation (projection moment theorem), for both parallel-beam and fan-beam imaging geometry. The derivation result indicates that there is a zero energy region forming a double-wedge shape in 2D Fourier domain. This observation is also referred to as the Fourier property of a sinogram in the previous literature. The major benefit of this representation is that the consistency conditions can be efficiently evaluated via 2D fast Fourier transform (FFT). Then, we suggest a method that extrapolates the truncated projections with data from a uniform ellipse of which the parameters are determined by optimizing these consistency conditions. The forward projection of the optimized ellipse can be used to complete the truncation data. The proposed algorithm is evaluated using simulated data and reprojections of clinical data. Results show that the root mean square error (RMSE) is reduced substantially, compared to a state-of-the-art extrapolation method
    corecore